
Free Space of Rigid Objects:
Caging, Path Non-Existence, and Narrow

Passage Detection

Anastasiia Varava?, J. Frederico Carvalho?, Florian T. Pokorny,
Danica Kragic

KTH Royal Institute of Technology
{varava,jfpbdc,fpokorny,dani}@kth.se

Abstract. In this paper, we present an approach towards approximat-
ing configuration spaces of 2D and 3D rigid objects. The approximation
can be used to identify caging configurations and establish path non-
existence between given pairs of configurations. We prove correctness and
analyse completeness of our approach. Using dual diagrams of unions of
balls and uniform grids on SO(3), we provide a way to approximate a
6D configuration space of a rigid object. Depending on the desired level
of guaranteed approximation accuracy, the experiments with our single
core implementation show runtime between 5 − 21 s. and 463 − 1558 s.
Finally, we establish a connection between robotic caging and molecular
caging from organic chemistry, and demonstrate that our approach is
applicable to 3D molecular models.

Keywords: Caging · Path non-existence · Computational Geometry

1 Introduction

Understanding the global topological and geometric properties of the free space
is a fundamental problem in several fields. In robotics, it can be applied to
manipulation and motion planning. In computational chemistry and biology, it
may be used to predict how molecules can restrict each other’s mobility, which
is important for sorting molecules, drug delivery, etc. [14, 22].

In robotic manipulation, the mobility of an object may be constrained by
manipulators and/or obstacles. When the object cannot escape arbitrarily far
from an initial configuration, we say that the object is caged. Formally, this
means that it is located in a compact path-connected component of its free space.
One of the biggest challenges in caging is verification – i.e., designing efficient
algorithms which are able to provide theoretical guarantees that an object in a
given configuration is caged. One approach towards caging verification relies on
particular geometric and topological features of the object under consideration.
This approach can be computationally efficient, but is limited to objects with
certain shape properties, such as the existence of narrow parts or handles.

To deal with objects and obstacles of arbitrary shape, one needs to show that
an object is located in a bounded path-connected component of its free space.

? The first two authors contributed equally.

2 A. Varava, J. F. Carvalho et al.

Direct reconstruction of a 6D configuration space is computationally expensive,
and to the best of our knowledge no fast and rigorous approach has been proposed
so far. In this paper, we address this problem.

Fig. 1: Diagram of our method for different application scenarios. We approximate the collision space
of an object by choosing a finite set of fixed object’s orientations and considering the corresponding
projections of the collision space to Rn (n ∈ {2, 3}).

We consider caging a special case of the problem of proving path non-
existence between a pair of configurations. To show that two configurations are
disconnected, we construct an approximation of the object’s collision space. Intu-
itively, we construct a set of projections of a subset of the object’s configuration
space to subspaces corresponding to fixed orientations of the object, see Fig. 1.
By construction, our approximation is a proper subset of the object’s collision
space, which implies that when our algorithm reports that the two configura-
tions are disconnected, then there is no path between them in the real free space.
However, for the same reason, our algorithm is not guaranteed to find all possible
caging configurations, since we do not reconstruct the entire collision space.

In [27], we presented our initial work on this approach without analyzing its
theoretical properties and discussing practical details of its implementation. The
core contributions of the present paper with respect to [27] can be summarized
as follows: (i) we present a way to implement our algorithm using geometric
constructions from [4] and [34], and run experiments in a 2D and 3D workspace;
(ii) we provide an accurate bound for the displacement of a 3D object induced
by a given rotation, and discuss how to practically discretize SO(3) using a
technique from [33]; (iii) we generalize our approach to narrow passage detection
and construct δ-clearance configuration space approximations; (iv) we provide
a correctness proof of our algorithm by showing that if in our approximation of
the free space two configurations are disconnected, then they are disconnected
in the actual free space; (v) we prove δ-completeness of the algorithm: if two
configurations are disconnected, we can construct a good enough approximation
of the free space to show that these configurations are either disconnected or
connected by a narrow passage; (vi) we establish a connection between robotic
caging and molecular caging in organic chemistry and discuss possible future
research in this direction; as a proof of concept, we run our algorithm on a pair
of molecules studied in [14] and obtain the same result as the authors in [14]
obtained in a chemical laboratory.

Free Space of Rigid Objects 3

2 Related Work

In manipulation, caging can be considered as an alternative to a force-closure
grasp [9, 10, 18, 26], as well as an intermediate step on the way towards a form-
closure grasp [21]. Unlike classical grasping, caging can be formulated as a purely
geometric problem, and therefore one can derive sufficient conditions for an
object to be caged. To prove that a rigid object is caged, it is enough to prove
this for any subset (part) of the object. This allows one to consider caging a
subset of the object instead of the whole object, and makes caging robust to
noise and uncertainties arising from shape reconstruction and position detection.

The notion of a planar cage was initially introduced by Kuperberg in 1990 [5]
as a set of n points lying in the complement of a polygon and preventing it from
escaping arbitrarily far from its initial position. In robotics, it was subsequently
studied in the context of point-based caging in 2D by Rimon and Blake [19], Pi-
pattanasomporn and Sudsang [16], Vahedi and van der Stappen [28], and others.
A similar approach has also been adopted for caging 3D objects. For instance,
Pipattanasomporn and Sudsang [17] proposed an algorithm for computing all
two-finger cages for non-convex polytopes. In [25, 29] the authors present a set
of 2D caging-based algorithms enabling a group of mobile robots to cooperatively
drag a trapped object to the desired goal.

In the above mentioned works fingertips are represented as points or spheres.
Later, more complex shapes of caging tools were taken into account by Pokorny
et al. [18], Stork et al. [23, 24], Varava [26], Makita et al. [9, 10]. In these works,
sufficient conditions for caging were derived for objects with particular shape
features. Makapunyo et al. [12] proposed a heuristic metric for partial caging
based on the length and curvature of escape paths generated by a motion planner.
The authors suggested that configurations that allow only rare escape motions
may be successful in practice.

We address caging as a special case of the path non-existence problem: an
object is caged if there is no path leading it to an unbounded path-connected
component. The problem of proving path non-existence has been addressed by
Basch et al. [2] in the context of motion planning, motivated by the fact that
most modern sampling-based planning algorithms do not guarantee that two
configurations are disconnected, and rely on stopping heuristics in such situa-
tions [6]. Basch et al. prove that two configurations are disconnected when the
object is ‘too big’ or ‘too long’ to pass through a ‘gate’ between them. There
are also some related results on approximating configuration spaces of 2D ob-
jects. In [31], Zhang et al. use approximate cell decomposition and prove path
non-existence for 2D rigid objects. They decompose a configuration space into
a set of cells and for each cell decide if it lies in the collision space. In [13]
McCarthy et al. propose a related approach. There, they randomly sample the
configuration space of a planar rigid object and reconstruct its approximation as
an alpha complex. They later use it to check the connectivity between pairs of
configurations. This approach has been later extended to planar energy-bounded
caging [8].

4 A. Varava, J. F. Carvalho et al.

The problem of explicit construction (either exact or approximate) of con-
figuration spaces has been studied for several decades in the context of motion
planning, and a summary of early results can be found in [30]. In [7] the idea
of slicing along the rotational axis was introduced. To connect two consecu-
tive slices, the authors proposed to use the area swept by the robot rotating
between two consecutive orientation values. In [32], this idea was extended to
using both outer and inner swept areas to construct a subset and a superset
of the collision space of polygonal robots. The outer and inner swept areas are
represented as generalized polygons defined as the union and intersection of all
polygons representing robot’s shape rotating in a certain interval of orientation
values, respectively. Several recent works propose methods for exact computa-
tion of configuration spaces of planar objects [3, 15]. In [3], a method towards
exact computation of the boundary of the collision space is proposed. In [15],
the authors explicitly compute the free space for complete motion planning.

As we can see, several approaches to representing configuration spaces of
2D objects, both exact and approximate, have been proposed and successfully
implemented in the past. The problem however is more difficult if we consider
a 3D object, as its configuration space is 6-dimensional. In the recent survey on
caging [11], the authors hypothesise that recovering a 6D configuration space
and understanding caged subspaces is computationally infeasible. We present
a provably-correct algorithm to approximate 3D and 6D configuration spaces,
which has a reasonable runtime on a single core of Intel Core i7 processor.

We study path-connectivity of the free space of 2D and 3D rigid objects.
We do this by decomposing the configuration space into a finite set of lower
dimensional slices. Although the idea of slicing is not novel and appears in the
literature as early as in 1983 [7], recent advances in computational geometry and
topology, as well as a significant increase in processing power, have made it easier
to approximate a 6D configuration space on a common laptop. When dealing
with slicing a 6D configuration space, we identify two main challenges: how to
quickly compute 3D slices, and how to efficiently discretize the orientation space.
For slice approximation, our method relies on simple geometric primitives —
unions of balls, which makes our algorithm easy to implement and generalizable
to 6D configuration spaces. Given a subset of an object, we determine how
densely the set of orientations should be sampled in order to approximate the
collision space of the object, and use dual diagrams of a union of balls [4] to
approximate the free space. This way, we do not need to use generalized polygons,
which makes previous approaches more difficult in 2D and very hard to generalize
to 3D workspaces. For SO(3) discretization, we use the method from [33], which
provides a uniform grid representation of the space. The confluence of these
factors result in overcoming the dimensionality problem without losing necessary
information about the topology of the configuration space, and achieving both
practical feasibility and theoretical guarantees at the same time.

Finally, our method does not require precise information about the shape of
objects and obstacles, and the only requirement is that balls must be located
strictly inside them, which makes our approach robust to noisy and incomplete

Free Space of Rigid Objects 5

sensor data. The focus of this paper is on proving path non-existence rather
than complete motion planning. In practice, it is often enough to have a rough
approximation of the free space to find its principal connected components, which
is easier to compute than its exact representation.

3 Free Space Decomposition

Since our work is related both to object manipulation and motion planning,
we use the general term ‘object’ without loss of generality when talking about
objects and autonomous rigid robots (e.g., disc robots) moving in n-dimensional
workspaces1

Definition 1. A rigid object is a compact connected non-empty subset of Rn.
A set of obstacles is a compact non-empty subset of Rn.

We want to represent both the object and the obstacles as a set of n−dimensional
balls. Therefore, we do not allow them to have ‘thin parts’. Formally, we assume
that they can be represented as regular sets [20]:

Definition 2. A set U is regular if it is equal to the closure of its interior:
U = cl(int(U)).

We approximate both the obstacles and the object as unions of balls lying in
their interior, S = {BR1

(X1), . . . , BRn(Xn)} and O = {Br1(Y1), . . . , Brm(Ym)}
of radii R1, . . . , Rn and r1, . . . , rm respectively.

Let C(O) = SE(n) denote the configuration space of the object. We define
its collision space2 Ccol(O) as the set of the objects configurations in which the
object penetrates the obstacles:

Definition 3. Ccol(O) = {c ∈ C | [int c(O)] ∩ [intS] 6= ∅}, where c(O) denotes
the object in a configuration c. The free space Cfree(O) is the complement of the
collision space: Cfree(O) = C(O)− Ccol(O).

In [27], we suggested that configuration space decomposition might be a
more computationally efficient alternative to its direct construction. Namely, we
represent the configuration of an object space as a product C(O) = Rn×SO(n),
and consider a finite covering of SO(n) by open sets (this is always possible,
since SO(n) is compact): SO(n) =

⋃
i∈{1,...,s} Ui. We recall the notion of a slice,

introduced in [27]:

Definition 4. A slice of the configuration space C(O) of a rigid object, is a
subset of C(O) defined as follows: SlU (O) = Rn × U , where U is an subset of
SO(n).

We denote a slice of the collision (free) space by SlcolU (O) (SlfreeU (O)). For
each slice we construct an approximation aSlcolU (O) of its collision space in such
a way that our approximation lies inside the real collision space of the slice,
aSlcolU (O) ⊂ SlcolU (O).

1 Throughout the paper n ∈ {2, 3}.
2 A theoretical analysis of different ways to define the free space can be found in [20].

6 A. Varava, J. F. Carvalho et al.

This way, we approximate the entire collision space by a subset aCcol(O):

aCcol(O) =

 ⋃
i∈{1,...,s}

aSlcolUi (O)

 ⊂ Ccol(O)

An object’s ε−core. First of all observe that by Def. 3, if a subset O′ of an
object O placed in configuration c ∈ C(O) is in collision, then the entire object O
is in collision. Therefore, the collision space of O is completely contained within
the collision space of O′. This allows us to make the following observation:

Observation 1 Consider an object O and a set of obstacles S. Let c1, c2 ∈
Cfree(O) be two collision-free configurations of the object. If there is no collision-
free path between these configurations for its subset O′ ⊂ O, then there is no
collision-free path connecting these configurations for O.

Therefore, if some subset O′ of O in configuration c is caged, then the entire
object O in the same configuration c is caged. This means that if we construct
aSlcolU in such a way that for any configuration c ∈ aSlcolU there exists a subset
O′ of c(O) such that O′ is in collision, then c(O) is also in collision. In [27] we
defined an ε−core of an object as follows:

Definition 5. The ε-core of an object O is the set Oε comprising the points of
O which lie at a distance3 of at least ε from the boundary of O: Oε = {p ∈
O | d(p, ∂O) ≥ ε}.

Fig. 2: An ε−core remains
inside the object when we
slightly rotate it

Now, for an object O and its ε-core Oε, we write
Oφ and Oφε respectively to mean that their orientation
is fixed at φ ∈ SO(n). So, let Ccol(Oφε) denote the col-
lision space of Oε with a fixed orientation φ. Note that
since the orientation is fixed, we can identify Ccol(Oφε)
with a subset of Rn.

In [27], we showed that for an object O, ε > 0
and a fixed orientation φ ∈ SO(n) there exists a non-
empty neighbourhood U(φ, ε) of φ such that for any
θ ∈ U(φ, ε), Oφε is contained in Oθ, see Fig. 2.

We approximate the collision space as follows:
we pick an ε > 0 and a set of orientation values {φ1, . . . , φs} so that
U(φ1, ε), . . . , U(φs, ε) cover SO(n), and so that for any θ ∈ U(φi, ε) we have
Oφiε ⊂ Oθ.

Finally, for each φi ∈ {φ1, . . . , φs}, we compute collision space slice ap-
proximations aSlcolU(φi,ε)

as the collision space of Oφiε , aSlcolU(φi,ε)
= Ccol(Oφiε) ×

U(φi, ε) which results in our approximation of the collision space: aCcolε (O) =⋃
φi
aSlcolU(φi,ε)

.

Discretization of SO(n): Elements of SO(n) can be seen as parametrizing
rotations in Rn, so for any q ∈ SO(n) we define Rq as the associated rotation.
Let D(Rq) denote the maximal displacement of any point p ∈ O after applying
Rq, i.e. D(Rq) = maxp∈O(d(p,Rq(p))), then Oε ⊂ Rq(O) if D(Rq) < ε.

3 By distance here we mean Euclidean distance in Rn

Free Space of Rigid Objects 7

In [27] we have derived the following upper bound for the displacement of
a two-dimensional object: D(Rq) ≤ 2| sin(q/2)| · rad(O) assuming that we ro-
tate the object around its geometric center and rad(O) denotes the maximum
distance from it to any point of the object, and q is the rotation angle. In the
two-dimensional case, discretization of the rotation space is trivial: given an ε we
pick q ∈ SO(2) such that D(Rq) < ε, and compute a set of orientation samples
{φ1 = 0, φ2 = 2q, . . . , φs = 2(s − 1)q}, where s = dπ/qe. This gives us a cov-
ering {U(φ1, ε), . . . , U(φs, ε)} of SO(2), where for each i ∈ {1, . . . , s} we define
U(φi, ε) = [φi − q, φi + q]4.

Let us now discuss the three-dimensional case. Similarly to the previous case,
our goal is to cover SO(3) with balls of fixed radius. To parametrize SO(3) we use
unit quaternions. For simplicity, we extend the real and imaginary part notation
from complex numbers to quaternions, where <q and =q denote the real and
“imaginary” parts of the quaternion q. Further, we identify =q = qii+ qjj+ qkk
with the vector (qi, qj , qk) ∈ R3; and we write q̄, and |q| to mean the conjugate
<q−=q and the norm

√
qq̄, respectively. We use angular distance [33] to define

the distance between two orientations: ρ(x, y) = arccos(|〈x, y〉|), where x and y
are two elements of SO(3) represented as unit quaternions which are regarded
as vectors in R4, and 〈x, y〉 is their inner product. A unit quaternion q defines
a rotation Rq as the rotation of angle θq = 2 cos−1(<q) around axis wq = =q

|=q| .

This allows one to calculate the displacement of the rotation D(q) = D(Rq) as:

D(q) = 2 sin(
θq
2) = 2 sin(cos−1(<q)) = 2|=q|

Define the angle distance from a point to a set S ⊆ SO(3) in the usual way as
ρ(S, x) = miny∈S ρ(y, x). In [33], the authors provide a deterministic sampling
scheme to minimize the dispersion δ(S) = maxx∈SO(3) ρ(S, x). Intuitively, the
dispersion of a set δ(S) determines how far a point can be from S, and in this
way it determines how well the set S covers SO(3). Now, assume we are given
a set of samples S ⊆ SO(3) such that δ(S) < δ. Then for any point p ∈ SO(3)
denote D(pS̄) = maxq∈S D(pq̄), we want to show that in these conditions, there
exists some small ε such that maxp∈SO(3)D(pS̄) < ε. This would imply that
there exists some δ′ > δ such that if we take U = {q ∈ SO(3) | ρ(1, q) < δ′},
then denoting Up = {qp | q ∈ U}, the family {Up}p∈S fully covers SO(3) and for

any q ∈ Up satisfies D(qp̄) < ε.
Now, Proposition 1 allows us to establish the relation between the distance

between two quaternions and displacement associated to the rotation between
them.

Proposition 1. Given two unit quaternions p, q, the following equation holds:

D(pq̄) = 2 sin(ρ(p, q)). (1)

The proof of Proposition 1 can be found in the supplementary material.
This means that if we want to cover SO(3) with patches Ui centered at a

point pi such that D(Rqp̄i) is smaller than some ε, we can use any deterministic

4 This is a cover by closed sets, but given q′ > q satisfying D(Rq) < ε we can use
instead U(φi, ε) = (φi − q′, φi + q′) which esults on the same graph.

8 A. Varava, J. F. Carvalho et al.

sampling scheme on SO(3) (e.g. [33]) to obtain a set S with dispersion δ(S) <
arcsin(ε2).

Note that if S ⊆ SO(3) has a dispersion δ(S) < arcsin(ε2) then the family of
patches {U(s, ε) | s ∈ S} forms a cover of SO(3).

Finally, given such a cover of SO(3), recall that we want to approximately

reconstruct the full free space of the object Cfree as the union of slices aSlfreeU(s,ε).

This requires us to test the whether two slices overlap. To make this efficient,
we create a slice adjacency graph, which is simply a graph with vertices S and
edges (s, s′) if U(s, ε) ∩ U(s′, ε) 6= ∅.

To compute this graph, we use the fact that U(s, ε) = {p ∈ SO(3)|ρ(s, p) < δ}
for some δ, and so if two slices U(s, ε), U(s′, ε) are adjacent, there must exist some
p such that ρ(p, s), ρ(p, s′) < δ, which implies ρ(s, s′) < ρ(s, p) + ρ(s′, p) < 2δ.
We use this fact to calculate the slice adjacency graph in Alg. 1.

Algorithm 1: ComputeAdjacentOrientations
input : S /* Set of points in SO(3). */
output: G /* Patch adjacency graph. */

1 V ← S;
2 δ ← δ(S);
3 T ← KDTree(V);
4 E ← {};
5 for p ∈ V do
6 P ← T.query(p, dist ≤ 2 sin(δ) + τ) \ {p} ;
7 P ← L ∪ T.query(−p, dist ≤ 2 sin(δ) + τ);
8 for q ∈ L do
9 add (p, q) to E;

10 end

11 end
12 return G = (V,E);

The algorithm starts by setting V = S, as this is the set of vertices in the
graph, and we put these vertices in aKDTree in order to quickly perform nearest
neighbor queries. Now, to compute the set of edges E, we locate for each p ∈ S
the points at an angle distance smaller than 2δ 5 in line 6. Finally, in line 7 we
also add edges to the points at an angle distance smaller than 2δ of −p, as both
p and −p represent the same orientation.

One of the prerequisites of Alg. 1 is the availability of an estimate of the dis-
persion of δ(S). In our implementation we used the algorithm in [33] to compute
S where the authors provide a provable upper bound for dispersion. However
because this is an upper bound, and we want a tight estimate of the dispersion,
in our implementation we employed a random sampling method to estimate the
dispersion. At each step we draw a uniform sample p and compute its two nearest
neighbors q, q′. We estimate the displacement at point p to be half the (angle)
distance between q and q′. The final estimate is taken to be the maximum over
the estimate for every sample taken.

5 Since the KDTree T uses the Euclidean distance in R4 we employ the formula
‖p− q‖ = 2 sin(ρ(p,q)

2
).

Free Space of Rigid Objects 9

Construction of Slices. In [27], we derive the following representation for the
collision space of Oφiε : Ccol(Oφε) =

⋃
i,j(BRj+ri−ε(Xj − GYi)), where G is the

origin chosen as the geometric center of the object, and GYi denotes the vector
from G to Yi. Now, let us discuss how we construct path-connected components
of Cfree(Oφε), see Alg. 2.

Fig. 3: Dual diagram of a set of circles.
Red circles with blue centers represent
the collision space, the yellow circles ap-
proximate the free space. The black edges
form the associated weighted Voronoi di-
agram.

For this, we first need to approximate the
complement of Ccol(Oφε), which is represented
as a finite collection of balls. We do this by
constructing its dual diagram [4]. A dual di-
agram Dual(

⋃
Bi) of a union of balls

⋃
Bi is

a finite collection of balls such that the com-
plement of its interior is contained in and is
homotopy equivalent to

⋃
Bi. It is convenient

to approximate Cfree(Oφε) as a dual diagram
of collision space balls for several reasons.
First, balls are simple geometric primitives
which make intersection checks trivial. Sec-
ond, the complement of the dual diagram is
guaranteed to lie strictly inside the collision
space, which provides us with a conservative
approximation of the free space. Finally, ho-
motopy equivalence between its complement
and the approximate collision space implies
that our approximation preserves the connectivity of the free space that we
want to approximate. Another advantage of a dual diagram is that it is easy to
construct.

First, recall that a weighted Voronoi diagram is a special case of a Voronoi
diagram, where instead of Euclidean distance between points a weighted distance
function is used. In our case, the weighted distance of a point x ∈ Rn from
Bri(zi) is equal to dw(x,Bri(zi)) = ||x− zi|| − r2

i . Consider a weighted Voronoi
diagram of a set of balls

⋃
iBri(zi). For each vertex yj of the Voronoi diagram,

let Bqj (yj) whose radius qj is equal to the square root of the weighted distance
of yj to any of the four (three in the two-dimensional case) balls from

⋃
iBri(zi)

generating yj . Then, take each infinite edge of the Voronoi diagram, and add
an degenerate “infinitely large” ball (a half-space) with center at the infinite
end of this edge, see Fig. 3. After constructing the dual diagram, it is easy to
compute connected components of the slice. Note that there always is one infinite
component corresponding to the outside world, and caging configurations are
contained in bounded components.

The Connectivity Graph. A naive algorithm described in [26] requires us
to first compute all the slices and their connected components, and only after
that compute the connectivity graph. This strategy leads to suboptimal usage of
memory — in practice, when one needs to compute around 30000 slices, storing
all their free space representations at the same time is not feasible on a common
laptop. However, we notice that this is not necessary, since the representation of

10 A. Varava, J. F. Carvalho et al.

Algorithm 2: Compute-Slice-Connectivity

Data: A union of d-dimensional balls Ccol(Oφε)
Result: A set of connected components aC0, . . . , aCn

1 V (Ccol(Oφε))← Weighted-Voronoi-Diagram(Ccol(Oφε))

2 aCfree ← Dual-Diagram(V (Ccol(Oφε)))
3 aC0 ← Compute-Infinite-Component()
4 i← 0

5 foreach ball ∈ aCfree do
6 if Connected-Component(ball) = ∅ then
7 i← i+ 1
8 aCi ← Compute-Component(ball)

9 end

10 end
11 return {aC0, . . . , aCn}

each slice is needed only to check whether its connected components overlap with
the connected components of adjacent slices. Therefore, in our implementation
each slice is deleted as soon as the connectivity check between it and the slices
adjacent to it is performed.

Let us now discuss how we check whether two connected components over-
lap. Let G(aCcolε (O)) = (V,E) be a graph approximating the free space. The
vertices of G correspond to the connected components {aCi1, . . . , aCini} of each
slice, i ∈ {1, . . . , s}, and are denoted by v = (aC,U), where aC and U are the
corresponding component and orientation interval. Two vertices representing
components Cp ⊂ aSlfreeUi

and Cq ⊂ aSlfreeUj
, i 6= j, are connected by an edge if

the object can directly move between them. For that, both the sets Ui, Uj , and
aCq, aCp must overlap: Ui ∩ Uj , aCq ∩ aCp 6= ∅. G(aCcolε (O)) approximates the
free space of the object: if there is no path in G(aCcolε (O)) between the vertices
associated to the path components of two configurations c1, c2, then they are
disconnected in Cfree(O). Finally, to check whether two connected components
in adjacent slices intersect, we recall that they are just finite unions of balls. In-
stead of computing all pairwise intersections of balls, we approximate each ball
by its bounding box and then use the CGAL implementation of Zomorodian’s
algorithm [34], which efficiently computes the intersection of two sequences of
three-dimensional boxes. Every time it finds an overlapping pair of boxes, we
check whether the respective balls also intersect.

Remark 1 Recall that in each slice the aCfree(Oφiε) are constructed as the dual
of the collision space Ccol(Oφiε), which entails that aCfree(Oφiε) has the same
connectivity as Cfree(Oφiε). However, it also entails that any connected com-

ponent of aSlfreeU(φi,ε)
partially overlaps with the collision space Ccol(Oφiε). This

means that for two connected components Cij , C
i′

j′ of adjacent slices which do

not overlap, it may occur that the corresponding approximations aCij , aC
i′

j′ do

overlap. In this case the resulting graph G(aCcolε (O)) would contain an edge be-
tween the corresponding vetices. This effect can be mitigated by verifying whether
the overlap between the approximations occurs within the collision space of both
slices. This can be done for example by covering the intersection aCij ∩ aCi

′

j′

Free Space of Rigid Objects 11

with a union of balls and checking if it is contained inside the collision space

Ccol(Oφiε) ∪ Ccol(Oφi′ε).

Existence of δ-clearance paths. For safety reasons, in path planning appli-
cations a path is often required to keep some minimum amount of clearance
to obstacles. The notion of clearance of an escaping path can also be applied
to caging: one can say that an object is partially caged if there exist escaping
paths, but their clearance is small and therefore the object is unlikely to escape.

Consider a superset of our object O, defined as a set of points lying at most
at distance δ from O, and let us call it a δ-offset of the object: O+δ = {p ∈
Rn | d(p,O) ≤ δ}. Now observe that two configurations are δ-connected if and
only if there exists a collision-free path connecting these configurations in the
configuration space of the δ-offset O+δ of the object. This means that two con-
figurations c1 and c2 are not δ-connected in Cfree(O) if and only if they are not
path-connected in Cfree(O+δ). Therefore, to understand the δ−connectivity of
the free space it is enough to compute path-connected components as previously
described, for the δ-offset O+δ.

One application of this observation is narrow passage detection: one can use
our free space approximation to identify narrow passages: if two configurations
are connected in aCfreeε+δ (O+δ), but disconnected in aCfreeε (O), then they are
connected by a narrow passage of width at most δ. Our approximation then can
be used to localize this passage, so that probabilistic path planning algorithm
can sample in this location.

Furthermore, we can view δ as the level of accuracy of the approximation: if
δ = 0, and our algorithm reports path non-existence, then this result is provably
correct; for δ > 0, we can guarantee non-existence of paths whose clearance does
not exceed δ. This means that depending on the desired level of accuracy one
can construct a coarse approximation of the free space by looking at the path
connectivity of aCfreeε+δ (O+δ). This approximation requires fewer slices, and Sec. 5
demonstrates that this significantly reduces the computation time.

4 Theoretical Properties of Our Approach

In this section, we discuss correctness, completeness and computational complex-
ity of our approach. The proofs of Propositions 2 and 3, as well as the discussion
about computational complexity, can be found in the supplementary material.
First of all, let us show that our algorithm is correct: i.e., if there is no collision-
free path between two configurations in our approximation of the free space,
then these configurations are also disconnected in the actual free space.

Proposition 2 (correctness). Consider an object O and a set of obstacles S.
Let c1, c2 be two collision-free configurations of the object. If c1 and c2 are not
path-connected in G(aCfreeε (O)), then they are not path-connected in Cfree(O).

Now, we show that if two configurations are not path-connected in Cfree(O),
we can construct an approximation of Cfree(O) in which these configurations
are either disconnected or connected by a narrow passage.

12 A. Varava, J. F. Carvalho et al.

Proposition 3 (δ-completeness). Let c1, c2 be two configurations in Cfree(O).
If they are not path-connected in Cfree(O), then for any δ > 0 there exists
ε > 0 such that the corresponding configurations are not path-connected in
G(aCfreeε (O+δ)), where the graph is produced according to the procedure outlined
in Rem. 1.

Computational complexity. The complexity of the first part of the algorithm
(slice construction) is O(n2m2), where n and m are the number of balls in
the object’s and the obstacle’s spherical representation; the complexity of the
second part (connectivity graph construction) is O(sl(b log3(b) + k)), where s
is the number of slices, l is the number of neighbours of each slice, b is the
maximum number of balls in each pair of connected components, and k the
number of pairwise intersections of the balls. The details can be found in the
supplementary material.

5 Examples and Experiments

We implemented our algorithm for 2D and 3D objects. All experiments were run
on a single core of a computer with Intel Core i7 processor and 16GB GPU.

Different Approximations of the Workspace. In this experiment, we con-
sider how the accuracy of a workspace spherical approximation affects the output
and execution time of the algorithm, see Fig. 4. For our experiments, we generate

Fig. 4: In the left we present a set of 2D obstacles in blue, and an object in green. The numbers
represent the connected components of the free space. In red are three approximations of the obstacles
by sets of balls of radius 15, 10, and 4, respectively. Note that the smaller the radius the more features
from the original configuration space are preserved.

a workspace and an object as polygons, and approximate them with unions of
balls of equal radii lying strictly inside the polygons. Note that the choice of the
radius is important: when it is small, we get more balls, which increases the com-
putation time of our algorithm; on the other hand, when the radius is too large,
we lose some important information about the shape of the obstacles, because
narrow parts cannot be approximated by large balls, see Fig. 4. We consider a
simple object whose approximation consists of 5 balls. We run our algorithm for
all the 3 approximations of the workspace, and take 5 different values of ε, see
Tab. 1. We can observe that as we increase the ε the computation time decreases.
This happens because we are using fewer slices. However, we can also observe
that when the ε is too large, our approximation of the collision space becomes
too small, and we are not able to find one connected component (see the last
column of Tab. 1).

Free Space of Rigid Objects 13
ε R = 15 R = 10 R = 4

0.30 · r 2 c. 741 ms 3 c. 1287 ms 4 c. 1354 ms
0.33 · r 2 c. 688 ms 3 c. 1208 ms 4 c. 1363 ms
0.37 · r 2 c. 647 ms 3 c. 1079 ms 4 c. 1287 ms
0.40 · r 2 c. 571 ms 3 c. 986 ms 3 c. 1156 ms
0.43 · r 2 c. 554 ms 3 c. 950 ms 3 c. 1203 ms

Table 1: We report the number of path-connected components we found and the computation time for
each case. When we were using our first approximation of the workspace, we were able to distinguish
only between components 4 and 2 (see Fig. 4), and therefore prove path non-existence between
them. For a more accurate approximation, we were also able to detect component 3. Finally, the
third approximation of the workspace allows us to prove path non-existence between every pair of
the four components.

Different Types of 3D Caging. As we have mentioned in Sec. 2, a number of
approaches towards 3D caging is based on identifying shape features of objects
and deriving sufficient caging conditions based on that. By contrast, our method
is not restricted to a specific class of shapes, and the aim of this section is to
consider examples of objects of different types and run our algorithm on them.
The examples are depicted on Fig. 5, and Tab. 2 reports execution time for
different resolutions of the SO(3) grid.

#slices rings (320) narrow part (480) surrounding (266) gravity (348) molecules (2268)
576 5 s δ = 2.4 6 s δ = 5.9 10 s δ = 1.2 4 s δ = 1.2 21 s δ = 1.02

4608 49 s δ = 0.7 70 s δ = 2.4 108 s δ = 0.4 41 s δ = 0.4 181 s δ = 0.34
36864 540 s δ = 0.0 785 s δ = 0.0 1073 s δ = 0.0 463 s δ = 0.0 1558 s δ = 0.0

Table 2: Results from running 3D experiments in the 4 different scenarios described in Fig. 5 and
the molecular model in Fig. 6 using 3 different resolutions for the SO(3) grid. The number of balls
used to approximate the collision space of each model is indicated in parenthesis next to the model
name. We report the computational time and the value of guaranteed clearance δ for each case .

Fig. 5: Different 3D caging scenarios. From left to right: linking-based caging linking-based
caging [18, 24, 23], narrow part-based caging [27, 35], surrounding-based caging, and caging with
gravity [8]. In linking-based and narrow part-based caging the obstacles form a loop (not necessarily
closed) around a handle or narrow part of the object. In surrounding-based the object is surrounded
by obstacles so as not to escape. In caging with gravity, gravity complements the physical obstacles
in restricting the object’s mobility. Here, we set a fixed level of the potential energy that the object
can achieve and consider every configuration with higher potential energy as “forbidden”.

Observe that depending on the desired accuracy of the resulting approxima-
tion, different numbers of slices can be used. In our current implementation, we
precompute grids on SO(3) using the algorithm from [33], and in our experiments
we consider 3 different predefined resolutions. However, given a concrete clear-
ance value δ, one can construct a grid on SO(3) with the necessary resolution
based on δ.

As we see, our algorithm can be applied to different classes of shapes. It cer-
tainly cannot replace previous shape-based algorithms, as in some applications
global geometric features of objects can be known a priori, in which case it might

14 A. Varava, J. F. Carvalho et al.

be faster and easier to make use of the available information. However, in those
applications where one deals with a wide class of objects without any knowl-
edge about shape features they might have, our algorithm provides a reasonable
alternative to shape-based methods.

Fig. 6: In this example, we consider two molecules
to see whether our algorithm can predict their
ability to form a cage. Atomic coordinates and
(van der Waals) radii were retrieved from the
Cambridge Crystallographic Data Centre (CCDC)
database. The depicted molecules are mesitylene
(left, CCDC 907758) and CC1 (right, CCDC
707056)[14]. Our algorithm reported that this pair
forms a cage, as experimentally determined in [14].

Molecular Cages. In organic chem-
istry, the notion of caging was in-
troduced independently of the con-
cept of [14]. Big molecules or their
ensembles can form hollow structures
with a cavity large enough to enve-
lope a smaller molecule. Simple or-
ganic cages are relatively small in size
and therefore can be used for selective
encapsulation of tiny molecules based
on their shape [14]. In particular, this
property can be used for storage and
delivery of small drug molecules in
living systems [22]. By designing the
caging molecules one is able to control
the formation and breakdown of a molecular cage, in such a way as to remain
intact until it reaches a specific target where it will disassemble release the drug
molecule. An example on Fig. 6 shows that in principle, our algorithm can be
applied to molecular models, assuming they can be treated as rigid bodies. In
our future work, we aim to use our algorithm to test a set of potential molecu-
lar carriers and ligands to find those pairs which are likely to form cages. This
prediction can later be used as a hypothesis for further laboratory experiments.

Spherical Representation
of the Workspace

 Free Space of the Slices

...1 0 1

...0 1 1

...1 1 1

Connected Components
of the Slices

...0 0 1

...1 1 1

...0 0 0

Edges between
Connected Components

Connectivity Graph
of the Free Space

Fig. 7: Pipeline for parallel implementation of our algorithm. Each slice can be computed and pro-
cessed independently of every other slice. Similarly, the existence of each edge arising from neigh-
boring orientations can be verified independently of every other edge.

Possible parallel implementation. Our algorithm has a lot of potential for
parallelization, and in the future we are planning on taking advantage of it. For
the examples considered above, our current implementation requires between 40
and 60 milliseconds to compute each slice together with its connected compo-
nents, and the connectivity check for a pair of slices is even faster. The bottleneck
of the algorithm is the number of slices. However, most of the computations can

Free Space of Rigid Objects 15

be performed in parallel: indeed, we can first compute the approximation of
the collision space for each orientation s in separate threads, and store them in
shared memory. After that, we can again run one process per slice to compute
the intersections between connected components of adjacent slices, see Fig. 7. In
the future, we are planning on implementing a parallel version of our algorithm.

6 Conclusion

In this paper, we provide a computationally feasible and provably-correct al-
gorithm for 3D and 6D configuration space approximation and use it to prove
caging and path non-existence. In the future, we will look into how we can make
our algorithm faster and applicable to real-time scenarios. In particular, we will
work on a parallel implementation, and investigate how the number of slice can
be reduced. We are also interested in integrating our narrow passage detection
and path non-existence techniques with probabilistic motion planners. Finally,
we are going to use our approach to find molecular cages.

7 Acknowledgements

The authors are grateful to D. Devaurs, L. Kavraki, and O. Kravchenko for their
insights into molecular caging.

References

1. Barraquand, J., Kavraki, L., Latombe, J.-C., Motwani, R., Li, T.-Y., Raghavan,
P.: A random sampling scheme for path planning.: IJRR, 16(6), 759–774 (1997).

2. Basch, J., Guibas, L. J., Hsu, D., Nguyen, A. T.: Disconnection proofs for motion
planning.: IEEE ICRA (2001), 1765–1772.

3. Behar, E., Lien, J.-M.: Mapping the configuration space of polygons using reduced
convolution.: IEEE/RSJ Intelligent Robots and Systems (2013), 1242–1248.

4. Edelsbrunner, H.: Deformable smooth surface design. Discr. and Comp. Geom.
(1999), 21(1), 87–115.

5. Kuperberg, W.: Problems on polytopes and convex sets.: DIMACS Workshop on
polytopes (1990), 584–589.

6. Latombe, J.-C.: Robot Motion Planning. Norwell, MA, USA: Kluwer Academic
Publishers (1991).

7. Lozano-Perez, T.: Spatial planning: A configuration space approach.: IEEE Trans-
actions on computers, 2, 108–120 (1983).

8. Mahler, J., Pokorny, F. T., McCarthy, Z., van der Stappen, A. F., Goldberg, K.:
Energy-bounded caging: Formal definition and 2-D energy lower bound algorithm
based on weighted alpha shapes.: IEEE RA-L, 1(1), 508–515 (2016).

9. Makita, S., Maeda, Y.: 3D multifingered caging: Basic formulation and planning.:
IEEE IROS (2008), 2697–2702.

10. Makita, S., Okita, K., Maeda, Y.: 3D two-fingered caging for two types of objects:
sufficient conditions and planning.: International Journal of Mechatronics and Au-
tomation, 3(4), 263–277 (2013).

11. Makita, S., Wan, W.: A survey of robotic caging and its applications. Advanced
Robotics, 31(19-20), 2017.

12. Makapunyo, T., Phoka, T., Pipattanasomporn, P., Niparnan, N., Sudsang, A.: Mea-
surement framework of partial cage quality based on probabilistic motion planning,
IEEE ICRA (2013), 1574–1579.

16 A. Varava, J. F. Carvalho et al.

13. McCarthy, Z., Bretl, T., Hutchinson, S.: Proving path non-existence using sampling
and alpha shapes.: IEEE ICRA (2012), 2563–2569.

14. Mitra, T., Jelfs, K. E., Schmidtmann, M., Ahmed, A., Chong, S. Y., Adams, D.
J., Cooper, A. I.: Molecular shape sorting using molecular organic cages.: Nature
Chemistry, 5, 276 (2013).

15. Milenkovic, V., Sacks, E., Trac, S. Robust complete path planning in the plane.:
Algorithmic Foundations of Robotics X, 37–52 (2013).

16. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of concave polygon.: IEEE
ICRA (2006), 2137–2142.

17. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of nonconvex polytopes.:
IEEE T-RO, 27(2), 324–333 (2011).

18. Pokorny, F. T., Stork, J. A., Kragic, D.: Grasping objects with holes: A topological
approach.: IEEE ICRA (2013), 1100–1107.

19. Rimon, E., Blake, A.: Caging planar bodies by one-parameter two-fingered gripping
systems.: IJRR, 18(3), 299–318 (1999).

20. Rodriguez, A., Mason, M. T.: Path connectivity of the free space.: IEEE T-RO,
28(5), 1177–1180 (2012).

21. Rodriguez, A., Mason, M. T., Ferry, S.: From caging to grasping.: IJRR, 31(7),
886–900 (2012).

22. Rother, M., Nussbaumer M. G., Rengglic, K., Bruns N.: Protein cages and synthetic
polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology
and materials science.: Chemical Society Reviews, 45, 6213, (2016).

23. Stork, J. A., Pokorny, F. T., Kragic, D.: Integrated Motion and Clasp Planning
with Virtual Linking.: IEEE/RSJ IROS (2013), 3007–3014.

24. Stork, J. A., Pokorny, F. T., Kragic, D.: A Topology-based Object Representa-
tion for Clasping, Latching and Hooking.: IEEE-RAS International Conference on
Humanoid Robots (2013), 138–145.

25. Pereira, G. A. S., Campos, M.F.M., Kumar, V.: Decentralized algorithms for multi-
robot manipulation via caging.: IJRR 23(7–8), 783–795 (2004).

26. Varava, A., Kragic, D., Pokorny, F. T.: Caging Grasps of Rigid and Partially
Deformable 3-D Objects With Double Fork and Neck Features. IEEE T-RO, 32(6),
1479–1497 (2016).

27. Varava, A., Carvalho, J. F., Pokorny, F. T., Kragic, D.: Caging and Path Non-
Existence: a Deterministic Sampling-Based Verification Algorithm. ISRR, 2017.
Preprint: https://www.csc.kth.se/~jfpbdc/path_non_ex.pdf

28. Vahedi, M., van der Stappen, A. F.: Caging polygons with two and three fingers.:
The IJRR, 27(11–12) 1308–1324 (2008).

29. Wang Z., Kumar, V.: Object Closure and Manipulation by Multiple Cooperating
Mobile Robots.: IEEE ICRA (2002), 394–399.

30. Wise, K., Bowyer, A.: A survey of global configuration-space mapping techniques
for a single robot in a static environment.: IJRR, 19(8), 762–779 (2000).

31. Zhang, L., Young, J. K., Manocha, D.: Efficient cell labelling and path non-
existence computation using C-obstacle query.: IJRR, 27(11–12), 1246–1257 (2008).

32. Zhu, D., Latombe, J.: New heuristic algorithms for efficient hierarchical path plan-
ning.: IEEE T-RO, 7(1), 9–20 (1991).

33. Yershova, A., Jain S., LaValle S. M., Mitchell J. C.: Generating Uniform Incre-
mental Grids on SO(3) Using the Hopf Fibration. IJRR, vol. 29, 801–812 (2009).

34. Zomorodian, A., Edelsbrunner H.: Fast software for box intersections, Proceedings
of the 16th annual symposium on Comp. geom., 129–138 (2000).

35. Liu J., Xin S., Gao Z., Xu K., Tu C., Chen B.: Caging Loops in Shape Embedding
Space: Theory and Computation. ICRA, 2018.

